a2 United States Patent

US009183435B2

(10) Patent No.: US 9,183,435 B2

Geringer et al. 45) Date of Patent: Nov. 10, 2015
(54) FEATURE GENERALIZATION USING (56) References Cited
TOPOLOGICAL MODEL
U.S. PATENT DOCUMENTS
(71) Applicant: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores, 5,473,739 A * 12/1995 Hsu S 345/619
CA (US) 6,016,153 A * 1/2000 Gueziec et al. 345/441
6,553,337 B1* 4/2003 Lounsberycccceeuene 703/2
. . . 7,215,810 B2* 5/2007 Kaufmann et al. 382/154
(72) Inventors: Daniel Louis Geringer, Germantown, 8,204,726 B2* 10/2012 Burleyetal. 345/582
MD (US); Siva Ravada, Nashua, NH 2008/0281839 Al* 11/2008 Bevanetal. 707/100
(US) 2010/0299370 Al* 11/2010 Ott_o 707/803
2012/0144355 Al* 6/2012 Daietal. 716/112
. 2013/0266230 Al* 10/2013 Peters et al. 382/224
(73) Assignee: ORACLE INTERNATIONAL 2013/0307848 Al* 112013 Tenactal. 345/420
CORPORATION, Redwood Shores, 2014/0267375 Al* 9/2014 Kilgard et al.coco. 345/611
CA (US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Shervin Nakhjavan
U.S.C. 154(b) by 77 days. (74) Attorney, Agent, or Firm — Kraguljac Law Group, LLC
(21) Appl. No.: 14/097,388 (57) ABSTRACT
(22) Filed: Dec. 5, 2013 Systems, metho.ds,.and other e?mbodiment.s associated with
feature generalization leveraging topological model func-
(65) Prior Publication Data Fionality are. describ.e(.i. In one emquiment, a method
includes loading primitives associated with a first feature and
US 2015/0161438 Al Jun. 11, 2015 a second feature into a topological model. The topological
model may be an existing topological model or a topological
(51) Int. CL model that is created by the feature generalization methods
GO6K 9/00 (2006.01) and systems described herein. The topological model stores
GO6K 9/46 (2006.01) primitives that are shared by the first feature and the second
GO6K 9/62 (2006.01) feature as a single unique shared primitive. The method
GOG6F 17/30 (2006.01) includes generalizing respective primitives including at least
GOG6T 17/05 (2011.01) one shared primitive to produce corresponding respective
(52) US.CL generalized primitives, and associating a generalized primi-
cre ... GO6K 9/00442 (2013.01); GOGF 17/30259 tive corresponding to the shared primitive with the first fea-
(2013.01); GOG6K 9/46 (2013.01); GO6K 9/6202 ture and the second feature, while maintaining alignment
(2013.01); GO6T 17/05 (2013.01) across shared edges of adjacent features and hierarchical
(58) Field of Classification Search re]ationships between features.

None
See application file for complete search history.

32 Claims, 7 Drawing Sheets

300

Start Feature /
Generalization

|

310
Identify First and Second /
Feature Primitives

330

Generalize Primitives /

Including Shared Primitive

y

340

Associate Generalized /
Primitives Including Shared Primitives

with First Feature
and Second Feature

End Feature
Generalization

U.S. Patent Nov. 10, 2015 Sheet 1 of 7 US 9,183,435 B2

A TN
______‘_/
Features
~— Loader
Logic 110
) Primitive
Generalization
Logic 120
Topological
Model
Feature Generalization System 100
S~

Figure 1

U.S. Patent Nov. 10, 2015 Sheet 2 of 7 US 9,183,435 B2

State A 21
S O ~in w 0
S4 County A County B
S19 S3 in /
. S8 CityB CityA CityC CityD
S18 C%B 520 C%/ c Y Y Y \
S17 N28 :
N37 City D
'\é S . a2 %}
ounty
516 cTBi N3 200
ity
S15 S22 N12 L/
N21 FACE 2 County B S9
N31 523
$10
S14
FACE 1
$13 524
N18 S11
S12 N1g
Node Table 220 Edge Table 230
D Xy iD End End Shape Points
Nodel | Node2
N1 -4,4
1 N1 N3 N1,S1,N3
N3 -3,4
2 N3 N9 N3,52,53,54,55,56,N9
3 N9 N12 N9,57,58,N12
N34 0,0
4 N12 N16 N12,59,510,511,N16
N35 -3.5,3
5 N16 N18 N16,512,N18
N36 51
6 N18 N21 N18,513,514,N21
N37 4,2
7 N21 N1 N21,515,516,517,518,519,N1
8 N3 N28 N3,520,N28
9 N28 N31 N28,521,522,N31
10 N31 N18 N31,523,524,N18
Face Table 235 County Feature Table 240 State Feature Table 245
ID Edge list ID FACE ID county ID
1 1,8,9,10,6,7 COUNTYA |1 STATE A COUNTY A,
COUNTY B
2 2,3,4,5,10,9,8 COUNTYB | 2 ,

Figure 2A

U.S. Patent Nov. 10, 2015 Sheet 3 of 7 US 9,183,435 B2
State A
s N9 St 21
84 S5 ot County A County B
s2 / in i w
N1 S1 N3 in
S8 53 S8 C't/; Ci { C\ C CityD
. i i it it
S1® city B @520 %g c Y X y y
S1 N28 .
N37 Ciy D
'235 A S21 [%]
oun
S1 v N34 N36 200
St 522% [City A N1 e
N2 FACE 2 County B S9
N313S23 o
514 ®go4 FACE 1
s13
N18 S11
S12 N1g
Node Table 220 Edge Table 230
D Xy D End End Shape Points
Node1l | Node2
N1 4,4
1 N1 N3 N1,51,N3
N3 -3,4
2 N3 N9 N3,52,53,54,55,56,N9
3 N9 N12 N9,57,58,N12
N34 0,0
4 N12 N16 N12,59,510,511,N16
N35 -3.5,3
5 N16 N18 N16,512,N18
N36 5,1
6 N18 N21 N18,513,514,N21
N37 4,2
7 N21 N1 N21,515,516,517,518,519,N1
8 N3 N28 N3:520,N28
9 N28 N31 N28,52 =522, N31
10 N31 N18 N31,523524,N18
Face Table 23 County Feature Table 240 State Feature Table 245
iD Edge list iD FACE iD county iD
1 1,8,9,10,6,7 COUNTYA |1 STATE A COUNTY A,
COUNTY B
2 2,3,4,5,10,9,8 COUNTYB | 2

Figure 2B

U.S. Patent Nov. 10, 2015 Sheet 4 of 7 US 9,183,435 B2
State A
2 o ~in in ——*21
S4 County A County B
g2 S5 s7 v in y in
N1 S1 N3 /in \'”\
S19 83
) S8 City B CiXA Cit i
$1 C%B @520 C%/ c y X y C City D
S1 N28 .
N37 City D
'\é S S21 [%]
ounty A
S1 N34 N6 200
$1 S20® " City A N1 v
N2 FACE 2 County B S9
N31pS23
$10
514 @504 FACE 1
$13
N18 S11
Node Table 220 Edge Table 230
iD Xy 1D End End Shape Points
Node 1l | Node?2
N1 -4,4
1 N1 N3 N1,51,N3
N3 -3,4
2 N3 N9 N3,52,53,54,55,56,N9
3 N9 N12 N9,57,58,N12
N34 0,0
4 N12 N16 N12,59,510,511,N16
N35 -3.5,3
5 N16 N18 N16,512,N18
N36 5,1
6 N18 N21 N18,513,514,N21
N37 4,2
7 N21 N1 N21,515,516,517,518,519,N1
8 N3 N28 N3:620,N28
9 N28 N31 N28,521,522,N31
10 N31 N18 N31,523:524,N18
Face Table 235 County Feature Table 240 State Feature Table 245
1D Edge list 1D FACE 1D county ID
1 1,8,9,10,6,7 COUNTYA 1 STATE A COUNTY A,
COUNTY B
2 2,3,4,5,10,9,8 COUNTYB | 2

Figure 2C

U.S. Patent

Nov. 10, 2015 Sheet 5 of 7 US 9,183,435 B2
300
Start Feature /
Generalization
310
Identify First and Second /

Feature Primitives

330

Generalize Primitives /

Including Shared Primitive

340

Associate Generalized /
Primitives Including Shared Primitives

with First Feature
and Second Feature

End Feature
Generalization

Figure 3

U.S. Patent Nov. 10, 2015 Sheet 6 of 7 US 9,183,435 B2

400
Start Feature /
Generalization
410
Select Edge Primitive j
420

Generalize Edge Primitive Shape Points /

Topological Relationship

Violated?
no yes
440 450
\ Replace original edge primitive Discard generalized edge primitive/
with generalized edge primitive and keep original edge primitive

| |
v

End Feature
Generalization

Figure 4

U.S. Patent Nov. 10, 2015 Sheet 7 of 7 US 9,183,435 B2
514 516
~— Process ~ Data
Computer 500
Processor 502
Bus 508
Vo Feat Me 504
Controllers 540 eature mory 294
Generalization
Logic 530
I/O
Interfaces 518
I/O Ports 510
Netvyork Disk 506
Devices
520

Figure 5

US 9,183,435 B2

1
FEATURE GENERALIZATION USING
TOPOLOGICAL MODEL

BACKGROUND

Spatial databases store geographical and topological data
to support map rendering and navigational applications. A
major consideration when rendering spatial data is to decide
which layers to display at a particular zoom level on a map.
For example, a layer may include very detailed polygonal
features with about 3000 features in each polygon. When the
zoom level is very far away (e.g., “zoomed out”), the pre-
ferred practice is not display these very detailed polygons
because the detail of the polygons is lost due to the limited
resolution of the display. Many of the polygon vertices are
rendered onto just a few display pixels. In addition, transfer-
ring the large number of vertices associated with detailed
polygonal features at a high zoom level can introduce a net-
work bottleneck.

A more realistic scenario is to use zoom control to only
“turn on” the detailed polygons when reasonably zoomed in,
and to display a generalized, less detailed representation of
the polygons when zoomed further out. This can be accom-
plished by generating a generalized version of the detailed
polygon layer. The generalized layer is displayed when the
display is zoomed out. Correct usage of zoom control and
generalized layers can produce better map generation perfor-
mance.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various
systems, methods, and other embodiments of the disclosure.
It will be appreciated that the illustrated element boundaries
(e.g., boxes, groups of boxes, or other shapes) in the figures
represent one embodiment of the boundaries. In some
embodiments one element may be designed as multiple ele-
ments or multiple elements may be designed as one element.
In some embodiments, an element shown as an internal com-
ponent of another element may be implemented as an external
component and vice versa. Furthermore, elements may not be
drawn to scale.

FIG. 1 illustrates one embodiment of a system that per-
forms feature generalization using a topological model.

FIGS. 2A-2C illustrate an example of feature generaliza-
tion using a topological model.

FIG. 3 illustrates one embodiment of a method associated
with feature generalization using a topological model.

FIG. 4 illustrates an embodiment of a method that performs
feature generalization while maintaining topological rela-
tionships of features.

FIG. 5 illustrates an embodiment of a computing system in
which example systems and methods, and equivalents, may
operate.

DETAILED DESCRIPTION

In topological spatial databases, features, for examples
states, counties, cities, streets, and so on, are often stored as a
collection of “primitives” such as nodes, edges, and faces (or
polygons). A node primitive is a single vertex. An edge primi-
tive is bounded by two end node primitives, (e.g., a start node
and an end node, in some embodiments in which an edge
primitive conveys a sense of direction). Each edge primitive
can also contain additional shape points which define the
edge shape between the end nodes. In a topology, edges only

10

15

20

25

30

35

40

45

50

55

60

65

2

intersect other edges at either a start or end node, and not
along intermediate shape points. The more nodes an edge
primitive has the more detailed the edge primitive is, resulting
in fine detail for any features to which the edge primitive
belongs. When edge primitives form an enclosed area, a face
(or polygonal) primitive is generated. Polygonal features
such as features corresponding to counties and states are
comprised of a set of face primitives.

Storing only detailed versions of features with large num-
bers of nodes is not always optimal, especially for map ren-
dering applications. When a display is zoomed out in a map-
ping application, rendering very detailed features requires
large quantities of disk space, memory, and network band-
width. It also slows spatial computation for comparing and
processing detailed features. Thus, many spatial databases
that support mapping and navigational applications store sim-
plified versions of features that require less data at the cost of
reduced feature resolution for use when a display is zoomed
out.

One technique that reduces the amount of data used to store
features is feature generalization. Feature generalization is
the process of applying a thinning or smoothing algorithm to
shape nodes of edge primitives with high vertex counts. The
end nodes of the edge primitive are not changed and the goal
is to generate edge primitives with reduced node counts,
while maintaining a shape similar to the original edge primi-
tive. Fewer nodes lead to faster rendering due to a reduction in
the amount of data that must be transferred over the network.
Fewer vertices also increase the performance of computations
that use the primitive to determine the relationship between
features.

One major challenge to feature generalization is maintain-
ing the alignment of shared edges of adjacent features. For
example, consider two adjacent counties C1 and C2 with a
shared border P1. If the counties are generalized separately, it
is very likely that the generalized version of P1 for C1 will be
different from the generalized version of P1 for C2. When the
counties C1 and C2 are rendered, the border P1 would no
longer be aligned.

Feature generalization sometimes causes a violation of
topological relationships between features. If county C1 has a
town T1 very near the border P1, generalization of P1 may
cause T1 to fall outside the boundaries of C1. Hierarchical
relationships are also an issue with feature generalization. In
a county, state, country hierarchy a state is defined as a col-
lection of its counties and a country is defined as a collection
of its states. When the counties are generalized outside the
context of the state, the county borders may no longer align
with, or be contained within, the state boundary.

Systems and methods are described herein that perform
feature generalization while maintaining the alignment of
shared edges as well as the topological and hierarchical rela-
tionships between features. This is accomplished by leverag-
ing functionality that may be provided by a topological model
during the feature generalization process. A topological
model used for feature generalization may be an existing
topological model or functions of a topological model that are
performed by the feature generalization methods and systems
described herein. Multiple features are generalized in the
same generalization process, ensuring that shared edges are
aligned and topological and hierarchical relationships are
maintained.

With reference to FIG. 1, one embodiment of a feature
generalization system 100 that performs feature generaliza-
tion using an existing topological model is illustrated. The
feature generalization system 100 includes loader logic 110
and primitive generalization logic 120. The logic of the fea-

US 9,183,435 B2

3

ture generalization system 100 may be installed in a computer
processor and cause the computer processor to perform vari-
ous functions. The loader logic 110 may be an API configured
to decompose features into primitives and load primitives into
a topological model for generalization. The loader logic 110
is configured to access stored geographical feature data that
describes a set of features. The loader logic 110 is configured
to load un-generalized primitives for the features into a topo-
logical model. In one embodiment, once the primitives are
generalized, the loader logic 110 is configured to generate and
store generalized features from generalized primitives for use
in future processing.

For the purposes of this description, a topological model is
used to perform the primitive generalization. However, it is
not necessary to use a topological model, in fact any compo-
nent or logic (not shown) that provides a limited set of topo-
logical model functions (e.g., shared edge generalization and
enforcement of topological relationships) may be used for the
purpose of generalizing primitives.

FIG. 2A illustrates a simplified example ot how spatial data
for a State A may be stored in a topological model. The
topological model includes a node table 220, an edge table
230, a face table 235, a county feature table 240, and a state
feature table 245. The node table 220 stores coordinates of
nodes. The edge table 230 stores edges, each with a pair ofend
nodes and a set of shape points which define the shape of the
edge. The face table 235 stores a list of edge identifiers that
form a polygonal region or face. Faces in a topological model
are automatically generated when edge primitives from
enclosed polygonal regions.

The county feature table 240 stores data for County A in the
first row and County B in the second row. Each county feature
is comprised of a face primitive. The State Feature table 245
contains a hierarchical feature called State A. State A is made
up of a set of counties, County A and County B. Any changes
to the edge primitives that make up the face primitives that the
County A and County B features point to is transparently
reflected in the State A, a hierarchical feature. In some
embodiments, the feature table stores pointers to a set of
edges in the edge table 230 instead of a set of faces. For
example, a road feature table would contain road features,
each pointing to a set of edge primitives instead ofa set of face
primitives.

The topological model stores primitives for features in the
node table 220, the edge table 230, and the face table 235.
Thus, when County A is loaded into the topological model,
Edge 1is recorded in the edge table 230 with N1 being the first
end node (or vertex) of Edge 1, N3 being the second end node
of Edge 1, and N1, S2, and N3 being shape points of Edge 1.
The coordinates of the end nodes of Edge 1, N1 and N3, are
recorded in the node table. This process continues until all
nodes and edges of County A are recorded in the node table
220 and the edge table 230. The edges 1, 8, 9, 10, 6, 7
associated with County A form a closed region, which popu-
lates Face 1 in the face table 235. County A is stored in the
county feature table 240, with a list of faces associated with
County A. In this example, County A is associated with only
one face, Face 1. Node 35 is stored in the node table 220 for
City B.

An important feature of the topological model is that
shared edges are assigned a single unique identifier. The
shared edge is stored in a single row of the edge table. Thus,
when the primitives for County A and County B are loaded
into the topological model, edges 8, 9, and 10 that were
generated for County A are reused and shared with County B.
A single version of the edges 8, 9, and 10 are stored for both
County A and County B in the edge table 230 and the face

30

40

45

55

4

table 235 uses the common identifier for the edges in the rows
for Face 1 and Face 2. The edges 2, 3, 4, and 5 that County B
does not share with County A are stored in the edge table 230.
The edges’ end nodes are stored in the node table 220. Nodes
corresponding to City A, City C, and City D are also stored in
the node table.

When State A is loaded into the topological model, no new
edges are stored because all of the edges are already stored by
virtue of County A and County B being loaded into the topo-
logical model. The topological model is configured to store
and maintain topological relationships as represented by the
tree 210. The topological relationships define County A and
County B as being in State A. City B is defined as being in
County A and Cities A, C, and D are defined as being in
County B. Any topological primitive edit operation, for
example, changing the shape points of an edge primitive in a
way that modifies the topological relationships represented
by the tree 210 will cause the topological model to raise an
error. Note that a hierarchical relationship also exists between
Counties A and B and State A because State A is the sum of
Counties A and B.

In one embodiment, an existing topological model is not
used, and the loader logic 110 creates a simplified topological
model that provides selected features that facilitate feature
generalization. In this embodiment, the loader logic may
identify shared original primitives that are common to two or
more features and assign respective single unique identifiers
to respective shared primitives. Thus, when a shared primitive
is generalized, a single generalized shared primitive results.
In this embodiment, the loader logic 110 stores topological
relationships like the ones described by the tree 210. These
relationships are enforced during feature generalization.

Returning to FIG. 1, the primitive generalization logic 120
generalizes the features within the context of the topological
model and in doing so leverages advantageous features of the
topological model to ensure that shared edges are aligned and
topological and hierarchical relationships are maintained.
The primitive generalization logic 120 operates on primitives
for many features stored in the topological model, not on
separate sets of primitives on a per-feature basis. Once the
edge primitives have been generalized, the loader logic 110 is
configured to generate generalized features based on gener-
alized edge primitives stored in the topological model.

The primitive generalization logic 120 is configured to
generalize features by generalizing edge primitives loaded
into the topological model. In one embodiment, the primitive
generalization logic 120 acts on the edges in the edge table
230. The primitive generalization logic 120 calls a generali-
zation or thinning routine to smooth some or all of the shape
points of edges in the edge table 230. During edge shape point
generalization, the end nodes of the edge are not modified.
Shape points non inclusive of the edges’ end nodes are gen-
eralized.

In one embodiment, an edge is smoothed by eliminating
some of the shape points for the edge while maintaining the
end nodes. In the spatial option to Oracle® Database calling
the CHANGE_EDGE_COORDS routine will selectively
eliminate shape points in a first set of shape points describing
an edge to create a second set of shape points that has fewer
vertices than the first set while maintaining the edge’s end
nodes. This routine is based on the Douglas-Peucker algo-
rithm as described in Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or
Its Caricature, by David Douglas & Thomas Peucker (The
Canadian Cartographer 10(2), 112-122 (1973)). In other
embodiments, edges can be smoothed by replacing shape
points with a second, smaller set of shape points that approxi-

US 9,183,435 B2

5

mates the shape of the edge. In these embodiments, the sec-
ond set of shape points may include shape points that were not
part of the first, original set of shape points for an edge.

FIGS. 2B and 2C are a progression that illustrates one
example of how the edges in the edge table 230 of FIG. 2A
might be smoothed by the primitive generalization logic 120.
Each edge/row in the edge table 230 is smoothed in turn by
calling a thinning routine, and the edge’s shape points are
replaced with a smaller set of shape points output by the
routine. The resulting simplified edges produce the less
detailed version of County A and County B shown in FIG. 2B.

Because the shared edges are treated as single unique enti-
ties, each shared edge’s shape points are generalized to pro-
duce a single shared generalized edge. Thus the shared border
edges between the counties and the state remain aligned
because they share the same generalized representation. Also,
the hierarchical relationship between Counties A and B and
State A is maintained because the borders of State A remain
common with the corresponding borders of Counties A and B.
Thus State A is still properly represented as the sum of Coun-
ties A and B and Counties A and B are still completely
contained within State A.

Because the generalization process is performed within the
context of the topological model, when any topological rela-
tionship like the ones described in the tree 210 is violated by
a generalized edge, an error will be raised by the topological
model. In FIG. 2B, it can be seen that the generalization of
edge 9 places City A in County A, which is a violation of the
topological relationship shown in tree 210. The topological
model will raise an error with respect to edge 9 and the edge
will not be generalized. Rather, edge 9 will remain stored as
its original set of shape points as shown in FIG. 2C. In some
embodiments, an alternative smoothing algorithm may be
applied in an attempt to smooth the edge to produce a gener-
alized edge that does not violate a topological relationship. In
this manner, topological relationships are maintained by only
generalizing edges when doing so will not violate a topologi-
cal relationship.

FIG. 3 illustrates one example embodiment of a method
300 that uses a topological model to generalize features while
maintaining alignment of and topological relationships
between features. The method 300 may be performed by the
feature generalization system 100 of FIG. 1. The method 300
includes, at 310, identifying primitives associated with a first
feature and a second feature. The first and second features
may be loaded into a topological model or a logic/component
that performs topological model type features such that
primitives that are shared by the first feature and the second
feature are stored as a single unique shared primitive. At 330,
respective edge primitives including a shared primitive and
other primitives are generalized to produce respective gener-
alized edge primitives. At 340, the method includes associat-
ing generalized primitives, including the shared generalized
primitive with the features.

In some embodiments, the topological model is configured
to maintain topological relationships between primitives,
such that when generalizing shaping points of an original
edge primitive will violate a topological relationship of the
original edge primitive with respect to another primitive
stored in the model, the resulting generalized primitive is
discarded and the original primitive is retained.

The topological model is configured to maintain hierarchi-
cal relationships between features. Hierarchical features
point to a set of features, not primitives. If the primitives
associated with a set of features that make up a hierarchical
feature are generalized, the hierarchical feature is implicitly
generalized. For example, a state hierarchical feature is com-

20

25

40

45

55

6

posed of a set of two county features. If each county features
points to primitives that get generalized, the county features
are then generalized, as well as the hierarchical state feature
that points to the counties.

In one embodiment, the topological model includes a node
table configured to store nodes, where each node is associated
with one or more features and an edge table configured to
store feature edges as a pair of end nodes and a set of shape
points. Each edge is associated with one or more features. In
this embodiment, generalizing of an edge is performed by
selecting the set of shape points corresponding to the edge
from the edge table; smoothing the edge shape points to create
a second set of shape points that includes fewer vertices than
the first set of shape points; and storing the second set of shape
points in the edge table such that the second set of shape
points corresponds to the edge in the edge table. The end
nodes of an edge are not modified by the smoothing process.
The smoothing may be accomplished by performing the Dou-
glas-Peucker algorithm on the edge.

In one embodiment, the generalizing includes, for each
edge associated with one or more features in the edge table,
generalizing the edge shape points to create a corresponding
generalized edge; and storing the generalized edge in the edge
table such that the generalized edge is associated with the one
or more features.

FIG. 4 illustrates one example embodiment of a method
400 that generalizes features using functionality provided by
a topological model that leaves edge primitives unchanged
when a generalized version of an edge primitive violates a
topological relationship. The method includes, at 410, select-
ing for generalization an original edge primitive, where a
feature associated with the original edge primitive is subject
to one or more topological rules. At 420, the method includes
generalizing the original primitive to produce a correspond-
ing generalized primitive. At 430, the method includes deter-
mining whether the generalized primitive violates a topologi-
cal rule. When the generalized primitive does not violate a
topological rule, at 440 the method includes replacing the
original primitive with the generalized primitive. When the
generalized primitive violates a topological rule, at 450 the
method includes discarding the generalized primitive and
retaining the original shared primitive in the topological
model.

The method may include steps that create a simple topo-
logical model framework that provides some topological
model functions. Feature generalization may be performed
within this framework. For example, the method 400 may
include identifying shared original primitives that are com-
mon to two or more features and assigning respective single
unique identifiers to respective shared primitives. In this man-
ner, when a shared primitive is generalized, a single general-
ized shared primitive results. Respective generalized shared
primitives are associated with the respective two or more
features that include the respective shared primitives.

The method 400 may include creating a node table config-
ured to store nodes, where each node is associated with one or
more features and an edge table configured to store feature
edges as a pair of end nodes and a set of shape points, where
each edge is associated with one or more features. A first set
of shape points corresponding to an original edge is selected
from the edge table and smoothed to create a second set of
shape points that includes fewer vertices than the first set of
shape points. The second set of shape points is stored in the
edge table such that the second set of shape points corre-
sponds to the edge in the edge table.

As can be seen from the foregoing description, the systems
and methods herein leverage topological model functionality

US 9,183,435 B2

7

to perform feature generalization in manner that preserves
feature alignment, topological relationships between features
as well as hierarchical relationships between features.

Computer Embodiment

FIG. 5 illustrates an example computing device that is
configured and/or programmed with one or more of the
example systems and methods described herein, and/or
equivalents. The example computing device may be a com-
puter 500 that includes a processor 502, a memory 504, and
input/output ports 510 connected by a bus 508. In one
example, the computer 500 may include feature generaliza-
tion logic 530 configured to facilitate feature generalization
in a manner similar to the systems and methods described in
FIGS. 1-4. In different examples, the logic 530 may be imple-
mented in hardware, a non-transitory computer-readable
medium with stored instructions, firmware, and/or combina-
tions thereof. While the logic 530 is illustrated as a hardware
component attached to the bus 508, it is to be appreciated that
in one example, the logic 530 could be implemented in the
processor 502.

In one embodiment, logic 530 or the computer is a means
(e.g., hardware, non-transitory computer-readable medium,
firmware) for performing feature generalization using a topo-
logical model. The logic 530 or the computer is a means for:
loading edge primitives associated with a first feature and a
second feature into a topological model, where the topologi-
cal model stores edge primitives that are shared by the first
feature and the second feature as a single unique shared edge
primitive; generalizing respective edge primitives including
shared edge primitives to produce corresponding respective
generalized edge primitives; and associating generalized
edge primitives with the features.

The means may be implemented, for example, as an ASIC
programmed to perform feature generalization using a topo-
logical model or leveraging topological model functionality.
The means may also be implemented as stored computer
executable instructions that are presented to computer 500 as
data 516 that are temporarily stored in memory 504 and then
executed by processor 502.

Logic 530 or computer 500 may also provide means (e.g.,
hardware, non-transitory computer-readable medium that
stores executable instructions, firmware) for performing fea-
ture generalization while leveraging functionality typically
provided by a topological model. The logic 530 or the com-
puter is a means for: selecting an original edge primitive
associated with a feature, where the feature is subject to one
or more topological rules; generalizing the original edge
primitive to produce a corresponding generalized edge primi-
tive; determining whether the generalized edge primitive vio-
lates a topological rule; and when the generalized primitive
does not violate a topological rule, associating the general-
ized edge primitive with the feature for future processing.

Generally describing an example configuration of the com-
puter 500, the processor 502 may be a variety of various
processors including dual microprocessor and other multi-
processor architectures. A memory 504 may include volatile
memory and/or non-volatile memory. Non-volatile memory
may include, for example, ROM, PROM, and so on. Volatile
memory may include, for example, RAM, SRAM, DRAM,
and so on.

A disk 506 may be operably connected to the computer 500
via, for example, an input/output interface (e.g., card, device)
518 and an input/output port 510. The disk 506 may be, for
example, a magnetic disk drive, a solid state disk drive, a
floppy disk drive, a tape drive, a Zip drive, a flash memory
card, a memory stick, and so on. Furthermore, the disk 506
may be a CD-ROM drive, a CD-R drive, a CD-RW drive, a

10

15

20

25

30

35

40

45

50

55

60

65

8

DVD ROM, and so on. The memory 504 can store a process
514 and/or a data 516, for example. The disk 506 and/or the
memory 504 can store an operating system that controls and
allocates resources of the computer 500.

The bus 508 may be a single internal bus interconnect
architecture and/or other bus or mesh architectures. While a
single bus is illustrated, it is to be appreciated that the com-
puter 500 may communicate with various devices, logics, and
peripherals using other busses (e.g., PCIE, 1394, USB, Eth-
ernet). The bus 508 can be types including, for example, a
memory bus, a memory controller, a peripheral bus, an exter-
nal bus, a crossbar switch, and/or a local bus.

The computer 500 may interact with input/output devices
via the /o interfaces 518 and the input/output ports 510.
Input/output devices may be, for example, a keyboard, a
microphone, a pointing and selection device, cameras, video
cards, displays, the disk 506, the network devices 520, and so
on. The input/output ports 510 may include, for example,
serial ports, parallel ports, and USB ports.

The computer 500 can operate in a network environment
and thus may be connected to the network devices 520 via the
i/o interfaces 518, and/or the i/0 ports 510. Through the net-
work devices 520, the computer 500 may interact with a
network. Through the network, the computer 500 may be
logically connected to remote computers. Networks with
which the computer 500 may interact include, but are not
limited to, a LAN, a WAN, and other networks.

In another embodiment, the described methods and/or their
equivalents may be implemented with computer executable
instructions. Thus, in one embodiment, a non-transitory com-
puter-readable medium is configured with stored computer
executable instructions that when executed by a machine
(e.g., processor, computer, and so on) cause the machine
(and/or associated components) to perform the methods out-
lined in FIGS. 1-4.

While for purposes of simplicity of explanation, the illus-
trated methodologies in the figures are shown and described
as a series of blocks, it is to be appreciated that the method-
ologies are not limited by the order of the blocks, as some
blocks can occur in different orders and/or concurrently with
other blocks from that shown and described. Moreover, less
than all the illustrated blocks may be used to implement an
example methodology. Blocks may be combined or separated
into multiple components. Furthermore, additional and/or
alternative methodologies can employ additional blocks that
are not illustrated. The methods described herein are limited
to statutory subject matter under 35 U.S.C §101.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not intended to be limiting. Both singular and plural forms
of terms may be within the definitions.

References to “one embodiment”, “an embodiment”, “one
example”, “an example”, and so on, indicate that the embodi-
ment(s) or example(s) so described may include a particular
feature, structure, characteristic, property, element, or limita-
tion, but that not every embodiment or example necessarily
includes that particular feature, structure, characteristic,
property, element or limitation. Furthermore, repeated use of
the phrase “in one embodiment™ does not necessarily refer to
the same embodiment, though it may.

“Computer-readable medium”, as used herein, is a non-
transitory medium that stores instructions and/or data. A com-
puter-readable medium may take forms, including, but not
limited to, non-volatile media, and volatile media. Non-vola-
tile media may include, for example, optical disks, magnetic

US 9,183,435 B2

9

disks, and so on. Volatile media may include, for example,
semiconductor memories, dynamic memory, and so on. Com-
mon forms of a computer-readable medium may include, but
are not limited to, a floppy disk, a flexible disk, a hard disk, a
magnetic tape, other magnetic medium, an ASIC, a CD, other
optical medium, a RAM, a ROM, a memory chip or card, a
memory stick, and other media from which a computer, a
processor or other electronic device can read. Computer-
readable medium described herein are limited to statutory
subject matter under 35 U.S.C §101.

“Computer storage medium” as used herein, is a non-
transitory medium that stores instructions and/or data. A com-
puter storage medium may take forms, including, but not
limited to, non-volatile media, and volatile media. Non-vola-
tile media may include, for example, optical disks, magnetic
disks, and so on. Volatile media may include, for example,
semiconductor memories, dynamic memory, and so on. Com-
mon forms of a computer storage medium may include, but
are not limited to, a floppy disk, a flexible disk, a hard disk, a
magnetic tape, other magnetic medium, an ASIC, a CD, other
optical medium, a RAM, a ROM, a memory chip or card, a
memory stick, and other media from which a computer, a
processor or other electronic device can read. Computer stor-
age medium described herein are limited to statutory subject
matter under 35 U.S.C §101.

“Logic”, as used herein, includes a computer or electrical
hardware component(s), firmware, a non-transitory computer
readable medium that stores instructions, and/or combina-
tions of these components configured to perform a function(s)
or an action(s), and/or to cause a function or action from
another logic, method, and/or system. Logic may include a
microprocessor controlled by an algorithm, a discrete logic
(e.g., ASIC), an analog circuit, a digital circuit, a programmed
logic device, a memory device containing instructions that
when executed perform an algorithm, and so on. Logic may
include one or more gates, combinations of gates, or other
circuit components. Where multiple logics are described, it
may be possible to incorporate the multiple logics into one
physical logic component. Similarly, where a single logic unit
is described, it may be possible to distribute that single logic
unit between multiple physical logic components. Logic as
described herein is limited to statutory subject matter under
35U.S.C §101.

While example systems, methods, and so on have been
illustrated by describing examples, and while the examples
have been described in considerable detail, it is not the inten-
tion of the applicants to restrict or in any way limit the scope
of the appended claims to such detail. It is, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the sys-
tems, methods, and so on described herein. Therefore, the
disclosure is not limited to the specific details, the represen-
tative apparatus, and illustrative examples shown and
described. Thus, this application is intended to embrace alter-
ations, modifications, and variations that fall within the scope
of the appended claims, which satisfy the statutory subject
matter requirements of 35 U.S.C. §101.

To the extent that the term “includes” or “including” is
employed in the detailed description or the claims, it is
intended to be inclusive in a manner similar to the term
“comprising” as that term is interpreted when employed as a
transitional word in a claim.

To the extent that the term “or” is used in the detailed
description or claims (e.g., A or B) it is intended to mean “A
or B or both”. When the applicants intend to indicate “only A
or B but not both” then the phrase “only A or B but not both”
will be used. Thus, use of the term “or’ herein is the inclusive,

5

10

15

20

25

30

35

40

45

50

55

10
and not the exclusive use. See, Bryan A. Garner, A Dictionary
of Modern Legal Usage 624 (2d. Ed. 1995).
What is claimed is:
1. A non-transitory computer storage medium storing com-
puter-executable instructions that when executed by a com-
puting device cause the computing device to:
identify primitives associated with a first feature;
identify primitives associated with a second feature;
store primitives that are shared by the first feature and the
second feature as a single unique shared primitive;

generalize respective primitives comprising at least one
shared primitive to produce corresponding respective
generalized primitives;

associate a generalized primitive corresponding to the

shared primitive with the first feature and the second
feature; and

load the generalized primitives into a topological model

that is configured to maintain topological relationships
between primitives.

2. The non-transitory computer storage medium of claim 1,
where the topological model that is configured to maintain
topological relationships between primitives in a manner
such that when generalizing of an original primitive will
violate a topological relationship of the original primitive
with respect to another primitive stored in the model, the
original primitive is retained in the topological model.

3. The non-transitory computer storage medium of claim 1,
where the topological model comprises:

a node table configured to store nodes, where each node is

associated with one or more features; and

an edge table configured to store feature edges as a pair of

end nodes and a set of shape points, where each edge is
associated with one or more features.

4. The non-transitory computer storage medium of claim 3,
where the topological model comprises:

a face table configured to store faces associated with a

group of edges that form a polygonal region; and

one or more feature tables configured to store features as a

set of primitives or a set of features.

5. The non-transitory computer storage medium of claim 4,
where the instructions for generalizing comprise instructions,
that when exectuted by the computing device, cause the com-
puting device to:

select a first set of shape points corresponding to an edge

from the edge table;

smooth the edge to create a second set of shape points that

includes fewer shape points than the first set of shape
points; and

store the second set of shape points in the edge table such

that the second set of shape points corresponds to the
edge in the edge table.

6. The non-transitory computer storage medium of claim 5,
where the second set of shape points is a subset of the first set
of shape points.

7. The non-transitory computer storage medium of claim 4,
where the instructions for generalizing comprise instructions,
that when executed by the computing device, cause the com-
puting device to store:

for each edge associated with one or more features in the

edge table:

generalize the edge to create a corresponding generalized

edge; and

store the generalized edge in the edge table such that the

generalized edge is associated with the one or more
features.

8. The non-transitory computer storage medium of claim 1,
where the instructions further comprise instructions that,

US 9,183,435 B2

11

when executed by the computing device, cause the computing
device to store generalized primitives in feature data such that
the generalized primitives are associated with a feature with
which a corresponding original primitive was associated.

9. The non-transitory computer storage medium of claim 8,
where the instructions for storing comprise instructions, that
when executed by the computing device, cause the computing
device to store respective pointers in the feature data to
respective generalized primitives in a topological model.

10. A computing system, comprising:

a computer processor;

a loader logic configured to cause the computer processor

to:

load original primitives associated with a first feature into

a topological model; and

load original primitives associated with a second feature

into the topological model;

where the topological model stores primitives that are

shared by the first feature and the second feature as a
single unique shared primitive; and

a primitive generalization logic configured to cause the

computer processor to:

select an original shared primitive that is associated, in the

topological model, with both the first feature and the
second feature;

generalize the original shared primitive to produce a cor-

responding generalized shared primitive, where each
generalized primitive comprises fewer data points than
an original primitive from which the generalized primi-
tive was produced; and

load the generalized shared primitive into the topological

model such that the generalized shared primitive is asso-
ciated with the first feature and the second feature and
replaces the original shared primitive in the topological
model, thereby increasing the speed with which a com-
puter processor renders the first feature and the second
feature.

11. The computing system of claim 10, where the topologi-
cal model comprises electronic storage media storing:

anode table configured to store nodes, where each node is

associated with one or more features; and

an edge table configured to store feature edges as a set of

shape points, where each edge is associated with one or
more features.

12. The computing system of claim 11, where the primitive
generalization logic comprises logic to cause the computer
processor to:

select a first set of shape points corresponding to an edge

from the edge table;

smooth the edge to create a second set of shape points that

includes fewer shape points than the first set of shape
points; and

store the second set of shape points in the edge table such

that the second set of shape points corresponds to the
edge in the edge table.

13. The computing system of claim 10, where the primitive
generalization logic is configured to cause the computer pro-
cessor to store respective pointers in the feature data to
respective generalized primitives in the topological model.

14. A non-transitory computer storage medium storing
computer-executable instructions that when executed by a
computing device, computer cause the computing device to:

load primitives associated with a first feature and primi-

tives associated with a second feature into a topological
model that is configured to maintain topological rela-
tionships between primitives, where the first feature is
subject to one or more topological rules;

10

15

25

30

35

40

45

50

55

60

12

select an original primitive associated with the first feature;

generalize the original primitive to produce a correspond-

ing generalized primitive;

determine whether the generalized primitive violates a

topological rule; and

when the generalized primitive does not violate a topologi-

cal rule, load the generalized primitive into the topologi-
cal model such that the generalized primitive is associ-
ated with the first feature for future processing.

15. The non-transitory computer storage medium of claim
14, where the instructions further comprise instructions, that
when executed by the computing device, cause the computing
device to:

identify shared original primitives that are common to two

or more features;

assign respective single unique identifiers to respective

shared primitives;

generalize one or more shared primitives, such that when a

shared primitive is generalized, a single generalized
shared primitive results; and

load respective generalized shared primitives into the topo-

logical model such that respective shared primitives are
associated with respective two or more features that
include the respective shared primitives.

16. The non-transitory computer storage medium of claim
14, where the instructions further comprise instructions, that
when executed by the computing device, cause the computing
device to:

create a node table configured to store nodes, where each

node is associated with one or more features; and

create an edge table configured to store feature edges as a

set of shape points, where each edge is associated with
one or more features.

17. The non-transitory computer storage medium of claim
16, where the instructions for generalizing comprise instruc-
tions, that when executed by the computing device, cause the
computing device to:

select a first set of shape points corresponding to an edge

from the edge table;

smooth the edge to create a second set of shape points that

includes fewer nodes than the first set of shape points;
and

store the second set of shape points in the edge table such

that the second set of shape points corresponds to the
edge in the edge table.

18. The non-transitory computer storage medium of claim
14, where the instructions further comprise instructions, that
when executed by the computing device, cause the computing
device to associate the original shared primitive with the first
feature in the topological model for future processing when
the generalized primitive violates a topological rule.

19. A computer-implemented method, comprising:

identifying primitives associated with a first feature;

identifying primitives associated with a second feature;

where primitives that are shared by the first feature and the
second feature are stored on a computer storage medium
as a single unique shared primitive;

generalizing respective primitives comprising at least one

shared primitive to produce corresponding respective
generalized primitives; and

associating a generalized primitive corresponding to the

shared primitive with the first feature and the second
feature; and

loading the primitives associated with the first feature and

the primitives associated with the second feature into a
topological model that is configured to maintain topo-
logical relationships between primitives.

US 9,183,435 B2

13

20. The computer-implemented method of claim 19, where
the topological model is configured to maintain topological
relationships between primitives in a manner such that when
generalizing of an original primitive will violate a topological
relationship of the original primitive with respect to another
primitive stored in the model, the original primitive is
retained.

21. The computer-implemented method of claim 20, where
the topological model comprises:

anode table configured to store nodes, where each node is

associated with one or more features; and

an edge table configured to store feature edges as a pair of

end nodes and a set of shape points, where each edge is
associated with one or more features.

22. The computer-implemented method of claim 21, where
the topological model comprises:

a face table configured to store faces associated with a

group of edges that form a polygonal region; and

one or more feature tables configured to store features as a

set of primitives or a set of features.

23. The computer-implemented method of claim 21, where
the generalizing comprises:

selecting a first set of shape points corresponding to an

edge from the edge table;

smoothing the edge to create a second set of shape points

that includes fewer shape points than the first set of
shape points; and

storing the second set of shape points in the edge table such

that the second set of shape points corresponds to the
edge in the edge table.

24. The computer-implemented method of claim 23, where
the second set of shape points is a subset of the first set of
shape points.

25. The computer-implemented method of claim 21, where
the generalizing comprises:

for each edge associated with one or more features in the

edge table:

generalizing the edge to create a corresponding general-

ized edge; and

storing the generalized edge in the edge table such that the

generalized edge is associated with the one or more
features.

26. The computer-implemented method of claim 19, fur-
ther comprising storing generalized primitives in feature data
such that the generalized primitives are associated with a
feature with which a corresponding original primitive was
associated.

27. The computer-implemented method of claim 19, where
the storing comprises storing respective pointers in the fea-
ture data to respective generalized primitives in a topological
model.

10

20

25

30

40

45

50

14

28. A computer-implemented method comprising:

loading primitives associated with a first feature and primi-

tives associated with a second feature into a topological
model that is configured to maintain topological rela-
tionships between primitives, where the first feature is
subject to one or more topological rules;

selecting an original primitive associated with the first

feature;

generalizing the original primitive to produce a corre-

sponding generalized primitive;

determining whether the generalized primitive violates a

topological rule; and

when the generalized primitive does not violate a topologi-

cal rule, loading the generalized primitive into the topo-
logical model such that the generalized primitive is asso-
ciated with the first feature for future processing.

29. The computer-implemented method of claim 28, fur-
ther comprising:

identifying shared original primitives that are common to

two or more features;

assigning respective single unique identifiers to respective

shared primitives;

generalizing one or more shared primitives, such that when

a shared primitive is generalized, a single generalized
shared primitive results; and

loading respective generalized shared primitives into the

topological model such that respective shared primitives
are associated with respective two or more features that
include the respective shared primitives.
30. The computer-implemented method of claim 28, fur-
ther comprising:
creating a node table configured to store nodes, where each
node is associated with one or more features; and

creating an edge table configured to store feature edges as
a set of shape points, where each edge is associated with
one or more features.

31. The computer-implemented method of claim 30, where
the generalizing comprises:

selecting a first set of shape points corresponding to an

edge from the edge table;

smoothing the edge to create a second set of shape points

that includes fewer nodes than the first set of shape
points; and

storing the second set of shape points in the edge table such

that the second set of shape points corresponds to the
edge in the edge table.

32. The computer-implemented method of claim 28, fur-
ther comprising associating the original shared primitive with
the first feature for future processing when the generalized
primitive violates a topological rule.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,183,435 B2 Page 1of1
APPLICATION NO. : 14/097388

DATED : November 10, 2015

INVENTOR(S) : Geringer et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In column 10, line 42, in claim 5, delete “exectuted” and insert -- executed --, therefor.

Signed and Sealed this
Twenty-eighth Day of June, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

